Welcome to HDF Workshop V
“Selected” ESDIS Status
What is HDF/HDF-EOS

Richard Ullman
ESDIS
This is the fifth “annual” HDF workshop sponsored by ESDIS and NCSA.

Combined this year with the Science Data Processing (SDP) workshop after our September meeting was canceled.

We use this workshop to help guide our priorities for HDF and HDF-EOS development over the next year. Please make it a “workshop” by asking questions and expressing opinions.

Consulting opportunities with NCSA and with ECS
- 2 lunches
- After hours
- Please sign up

Panel discussion tomorrow afternoon.

Presentations from this workshop will be posted on the web on the HDF-EOS tools and information web site:

http://hdfeos.gsfc.nasa.gov

Also on the Science Data Processing workshop page:

Outline

- Welcome
- “Selected” ESDIS Status
- What is HDF/HDF-EOS
Since Terra launch, the EOSDIS science systems (ECS, DAACs, and SIPS) have processed and made available over 750 Terabytes Terra and Landsat 7 products.

In many cases, validation of Terra products is continuing and care should be taken when using these data for science research.

- ASTER data, CERES data, and some MODIS products are at the “validated” state
- **ASTER**
 - Validated: Radiance at sensor, AST06 Decorrelation stretch, AST04 Brightness temperature
 - Provisional: AST09 Surface radiance-VNIR,SWIR, AST09T Surface radiance-TIR, AST07 Surface reflectance-VNIR,SWIR, AST08 Surface kinetic temperature, AST05 Surface emissivity
- **CERES “Edition 1” validated data released. “Edition 2” reprocessing expected to be completed June ‘02.**
- **MISR products upgraded from “beta” to “provisional”:**
 - Geometric Parameters (from MISR PGE7)
 - L1B2 Terrain Radiance(a.k.a. GRP_TERRAIN_GM, MI1B2T) (from MISR PGE1)
 - L1B2 Ellipsoid Radiance
- **MODIS data reprocessing is in process, many datasets in “provisional status”**
- **MOPITT**
 - Limited amounts of Beta quality data are available from the LaRC DAAC.
Total L0-4 Archive Volume for All Terra Instruments (w/o CERES): 8-Day Average
March 2000 - September 2001
Archive Volume Average - 930.4 GB/day

Baseline Volumes (GB/day)
03/00 - 856
03/01 - 1,758
09/01 - 2,361
Volume Distributed to Users Each Month by DAAC
Future Planning - Data Pools

- ECS DAACs are being augmented with a new delivery capability - Data Pools
 - Data Pools are large, on-line, smart disk farms attached to ECS that allow users to quickly download key, popular data sets
 - The Data Pool hardware and software will be installed at the DAACs in first quarter of FY02.
 - Data pools have metadata inventories to enable data location and filtering including personalized data view and to support DAAC controlled data residency.
 - Special services, including search and subsetting, will be available to users through the data pool interface (different from EDG).
 - User interface is via a “navigation” client based on GSFC DAAC-developed WHOM interface
 - Data pools are being procured using funds from the ECS “Synergy” earmark managed by NASA HQ/YO.
 - Operations concept for the data pools is being coordinated with YO (Gubbels) to ensure adequate support for YO applications requirements
 - DAAC Managers will work with their UWGs and YO to establish a data management plan for their Data Pool
The ESDIS Project is preparing to procure an ESDIS Maintenance and Operations contractor.

ECS Maintenance and Development (EMD) Contract will be an Indefinite Delivery Indefinite Quantity (IDIQ) procurement:
- Broad scope of potential work provides flexibility with minimum commitment
- Specific work added by multiple Task Orders
- 5 year overall period of performance; specific tasks define their own periods of performance (e.g., Task 1 will be 3 years)

Extended transition period between ECS and EMD designed to ensure transfer of knowledge of developed operational ECS to EMD winner.

Target RFP release is Mid-March 2002.
The DAACs and the ESDIS Project continue to receive critical assessment and recommendations from the DAAC User Working Groups (UWGs)

- The UWGs are comprised of discipline and cross-discipline scientists and by applications researchers and data users.
- The UWG Chairs have met through telecons to exchange ideas and lessons learned regarding the UWG process.
 - Initiated and chaired by the ESDIS Project Scientist
- UWGs meet every 6-9 months and are always looking for new members to augment their panels.
The ESDIS Project has formed a special Data Access Working Group (DAWG)
- The DAWG is comprised of representatives from the DAACs, the Science Working Group on Data (SWGD), the instrument science teams, the SIPSs, and the general user community
- The DAWG is addressing operations concepts and system inefficiencies that may be limiting access to EOS data at the DAACs
 - Key problem areas have been identified and prioritized for work off.
 - Where problems are already known (through existing NCRs) the priority for work off of those NCRs has been raised.
 - Other, new NCRs, have been written against the system to improve access throughput.
 - Identifying new capabilities that would support refined data access operations concepts
- The DAWG process has been very effective, due in large part to the “targeted” focus of the working group
 - Need and effectiveness of focused “tiger teams” is a key lesson learned for NewDISS
The Science Working Group on Data (SWGD) is comprised of representatives from
the EOS instrument teams (primarily Terra), the DAACs, and technical experts
from the ESDIS project.

The SWGD is an advocate for EOS science processing in an advisory role in helping
ESDIS prioritize use of enhancement resources

- The SWGD has been looking at throughput requirements for the EOS science data processing
 and distribution based on measured performance of systems and algorithm software.
- SWGD has made numerous recommendations to the Project for hardware enhancement to
 improve throughput in key, target areas.
- The SWGD as begun looking at other data center issues including distribution and tool
 availability.
Outline

- Welcome
- “Selected” ESDIS Status
- What is HDF/HDF-EOS
What is HDF?

- A container for storing scientific data
 - A portable format and a portable library
- Stores images, multidimensional arrays, tables, etc.
- Emphasis on storage and I/O efficiency
- Free and commercial software support
- Emphasis on standards
- Users from many engineering and scientific fields
What is HDF5?

- **New format(s) and library (c.1998)**
 - Format is not compatible with HDF4 library
 - Primary Objects:
 - Groups
 - Datasets
 - Secondary Objects:
 - Datatypes
 - Dataspaces
 - Additional means to organize data
 - Attributes
 - Sharable objects
 - Storage and access properties

- **New Demands**
 - Bigger, faster machines and storage systems
 - massive parallelism, teraflop speeds
 - parallel file systems, terabyte storage
 - Greater complexity
 - complex data structures
 - complex subsetting
 - Emphasis on remote & distributed access

- **New HDF5 Features**
 - More scalable
 - Larger arrays and files
 - More objects
 - Improved data model
 - New datatypes
 - Single comprehensive dataset object
 - Improved software
 - More flexible, robust library
 - More flexible API
 - More I/O options
What is HDF-EOS?

- To share files, users must organize them similarly.
- **HDF user groups create standard profiles**
 - Ways to organize data in HDF files.
 - Metadata
 - API and library
- **HDF-EOS is the standard profile of HDF for EOS standard products**
 - Swath
 - Grid
 - Point
 - Profile (Atmospheric profile)
HDF-EOS lessons learned

- Ten years since first “trade study” for Earth Systems Science data format standard.
 - “Baseline standard” decision September 1993 (nine years)
 - First library was released June 1996 (six years)
 - HDF-EOS 5 released spring 2001 (one year)

- The concept of a “profile” for interchange of files among members of a producer/user community is reasonable.

- It has been difficult for HDF-EOS development to quickly respond to community feedback.

- Standard still allows a great deal of flexibility.
 - This flexibility permits mission or instrument science teams to create products with the subtlety that they require.
 - Flexibility also means that general purpose (cross-product) end-user tools are difficult to support.

- “Standards are difficult to negotiate but essential for success.”
 - Dolly Perkins (SDP Workshop 2/27/02)